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Abstract

Classical operating system architecture provides support for only a limited class of coarse-
grained security policies. Furthermore, system software has grown too large and complicated
to be considered trustworthy. To address these shortcomings, we have explored the application
of programming language technology, including advanced type-systems, proof systems, anal-
yses, and compilers for realizing new classes of security policies and for reducing or relocating
the trusted computing base.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Features
D.4.6 [Operating Systems]: Security and Protection
F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Pro-
grams
K.6.5 [Management of Computing and Information Systems]: Security and Protection

General Terms
Languages, Security, Verification

Keywords:
in-lined reference monitor, static analysis, type systems, proof-carrying code, secure informa-
tion flow, firmware

1 Introduction
The need for secure computing first became apparent in the early 1970's, when the high cost
of hardware forced users to share standalone computers by multiplexing processor time. Con-
current processes had to be isolated from each other in order to prevent the bugs of one process
from disrupting the execution of another. Different processes resided in separate regions of
memory and used the processor during disjoint time intervals. Security policies governed ac-
cess to shared resources, such as long-term storage, so that they could be shared in a safe and
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controlled way. The operating system, through a hardware-based reference monitor, enforced
these policies by intercepting critical operations and blocking them if necessary. Reference
monitors and mechanisms enforcing program isolation were small and understandable, so one
could be confident that these security policies would be enforced.

Today's operating systems are much more complex than those of the 1970's. They consist
of tens of millions of lines of code and must be frequently updated with patches, new device
drivers, and other modules received over the Internet. The extensions might come from authen-
ticated sources, but it is difficult to design code that works correctly in every context. There
is little basis for confidence in such large pieces of code that evolve rapidly with frequent up-
dates. It is no surprise that with alarming regularity, attackers exploit logic and coding errors
to compromise confidentiality, integrity, or availability of computing systems.

Application software that runs above the operating system is also frequently updated by
extensions, often packaged as applets or scripts. Content received over the Internet, such
as email messages and web pages, typically includes active elements that are executed upon
receipt, often without a user's knowledge or ability to intervene. As a result, users today are
susceptible to a new class of attacks-attacks not against the operating system but against
applications. Since applications run with the privileges of a user, these attacks have access to
confidential data and can easily compromise the integrity of the host and data. Virus scanners
have proven effective for blocking some known attacks of this form, but they cannot detect
previously unseen or obfuscated threats.

In short, today's computers run a collection of software that is dynamically changing, and
users often cannot determine what software is actually being executed, what caused it to exe-
cute, or what it might do. Classical operating system mechanisms for isolation and reference
monitors provide only limited protection, because they do not distinguish between legitimate
application code running on behalf of the user and code provided by an attacker. Furthermore,
system software has grown too large and complicated to be considered trustworthy. New tech-
nology is needed to build systems that are secure and that we can trust.

2 Language-Based Security
The efforts of this project focus on rich classes of security policies and corresponding en-
forcement mechanisms that can be used to establish trust in system and application software,
regardless of origin. Such mechanisms must remain effective despite the ever-increasing size
of operating systems and the constant changes that system and application software must un-
dergo. The enabling technologies come from research in programming languages, including
semantics, type systems, program logics, compilers, and runtime systems. We believe that
research in these areas is capable of delivering the flexible, general, and high-performance
enforcement mechanisms we seek as well as providing a basis for assurance in the resulting
enforcement mechanisms. Here is our rationale.

* The functionality of any hardware-based mechanism can always be achieved by software
alone, since one can build an interpreter that does the same checks as the hardware. If
the overhead of interpretation is too great, the performance gap can be closed by us-
ing compilation technologies, such as just-in-time compilers, partial evaluation, runtime
code generation, and profile-driven feedback optimization. Furthermore, unlike hard-
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ware realizations, software implementations can be more easily extended or changed to
meet new, application-specific demands as the context changes. Indeed, in Section 3, we
describe an approach that allows application-specific policies to be easily specified and
dynamically composed.

" Modem high-level languages, including Java and ML, provide linguistic structure such
as modules, abstract data types, and classes that allow programmers to specify and en-
capsulate application-specific abstractions. The interfaces of these abstractions can then
be used to enrich the vocabulary of the security framework with application-specific con-
cepts, principals, and operations.

" Code analysis, including type checking, dataflow analysis, abstract interpretation, and
proof checking, can be leveraged to reason statically about the runtime behavior of code.
This allows us to enforce policies, such as restrictions on information flow, that are im-
possible to implement using runtime mechanisms such as reference monitors. Program
analysis also allows further code optimization to eliminate unnecessary dynamic checks.
The program analyzer, which could well be a large and complex piece of code, can be
replaced in a trusted computing base (TCB) by a proof checker, which will typically be
much smaller.

In short, by analyzing code before it executes, runtime checks are avoided, a wider class
of policies can be enforced, and the trusted computing base can be relocated. By modifying
code before it executes, policies that involve application-specific abstractions and arbitrary
program interfaces can be enforced. Finally, by using high-level language abstractions, we can
effectively enrich the vocabulary of the security policy and its enforcement mechanisms.

The idea of using languages and compilers to help enforce security policies is not new. The
Burroughs B-5000 system required applications to be written in a high-level language (Algol),
and the Berkeley SDS-940 system employed object-code rewriting as part of its system pro-
filer. More recently, the SPIN [5], Vino [52, 47], and Exokemel [13] extensible operating
systems have relied on language technology to protect a base system from a limited set of
attacks by extensions. What is new in our work is the degree to which language semantics
provides the leverage. We have examined integrated mechanisms that work for both high- and
low-level languages, that are applicable to an extremely broad class of fine-grained security
policies, and that allow flexible allocation of work and trust among the elements responsible
for enforcement.

In the following, we report on four specific focus areas where we have successfully ap-
plied language technology to increase the system security: in-lined reference monitors for
application-level safety properties (Section 3), type systems for ensuring safety of low-level
legacy languages (Section 4), type systems for end-to-end confidentiality and integrity (Sec-
tion 5), and secure languages for firmware (Section 6).

3 Inlined Reference Monitors
SH (software fault isolation) employs program modification to rewrite binaries so that only
reads, writes, or branches to appropriate locations in a program's address space are allowed [51].
This memory safety security policy is useful for protecting a base system (e.g., a kernel) from
certain misbehavior by extensions as well as for protecting different users' programs from
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each other. Though traditionally enforced by address translation hardware, supporting mem-
ory safety by program modification has two advantages: (i) it reduces the overhead of cross-
domain procedure calls and (ii) it can implement a more-flexible memory-safety model.

SFI-inserted code can be viewed as a reference monitor that has been "in-lined" into a tar-
get application. This observation led us to investigate the fundamental limits and engineering
issues associated with using in-lined reference monitors (IRMs) in general. With the IRM ap-
proach, a security policy is specified in a declarative language, and a general-purpose tool is
used to rewrite code for the target application, inserting tests and state to enforce the policy.

Schneider proved that the class of properties that can be enforced by a reference moni-
tor (in-lined or otherwise) is restricted to safety properties' and that any enforceable safety
property could, at least in principle, be enforced by an execution monitor [46].

In subsequent work, Morrisett, Schneider and their graduate student Hamlen revisited the
framework to consider issues of computability and the more general class of program rewriters
as policy enforcement mechanisms [23]. In this revised model, a program rewriter is allowed
to replace faulty or malicious code with any new behavior, as long as that behavior respects the
intended policy. Intuitively, IRMs are a special case of rewriters that replace faulty code with
"halt". The framework allowed us to compare different enforcement mechanisms, including
static analyses, IRMs, and program rewriters and show formally that rewriters can enforce
strictly more policies than the other approaches.

The rewriting approach is particularly attractive from a methodological perspective, be-
cause it allows composition and analysis of policies. The conjunction of two policies is en-
forced by passing the target application through the rewriter twice in succession-once for
each policy. By keeping policy separate from program, we can more easily reason about and
evolve the security of a system. Furthermore, now that the class of security policies that can be
enforced by rewriting is characterized in a mathematically rigorous way, it is ideal for use in
connection with other language-based approaches, which exploit formal semantics and analy-
sis.

The rewriting approach also has been shown to be practical. Two generations of pro-
totypes have been built and a third is under construction. The first prototype, SASI (Secu-
rity Automata SFI Implementation), handled Intel's x86 and Java's JVM architectures [15];
the second, PSLang (Policy Specification Language) and PoET (Policy Enforcement Toolkit),
demonstrates the extent to which object-code type annotations are helpful but works only on
JVML. The PSLang/PoET prototype gives competitive performance for the implementation of
Java's stack inspection security policy [14].

A disadvantage with both SASI and PoET/PSLang is that they depend crucially upon the
correctness of the rewriter. Our third prototype, called Mobile and which is being developed
for Microsoft's .NET framework, overcomes this limitation. The Mobile rewriter produces
modified code along with a set of annotations that allows a third party checker to easily verify
that the resulting code respects the policy. Thus, the rewriter is removed from the trusted
computing base in favor of a (simpler) trusted type-checker. In this respect, Mobile is a certified
rewriter that leverages the ideas of proof-carrying code [38].

'In the literature on concurrent program verification, safety properties correspond to closed sets and liveness prop-
erties correspond to dense sets. Every property is thus the conjunction of a safety and a liveness property [45]
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4 Type Systems for Legacy Languages
High-level languages, such as Java, C#, and ML provide compelling security and reliability
benefits. In particular, a type-safe language automatically ensures both object-level memory
isolation and a form of control-flow isolation, which are necessary to ensure the integrity of
any reference monitor. Nevertheless, most of today's security-critical software is written in
type-unsafe languages. For example, all major operating systems including Windows, Mac
OS X, Linux, etc. are written in C. Consequently, attackers have been able to leverage coding
flaws including buffer overruns, integer overflows, and format string mismatches-all flaws
that would be prevented in a type-safe language-to break into machines.

Given that operating systems consist of tens of millions of lines of code, it is simply too
expensive for vendors to throw away the code and start over in a type-safe language. Even if
they could afford to do so, there are strong technical reasons that prevent the use of today's
type-safe languages in domains such as operating systems, real-time systems, and embedded
systems. In large part, this is because today's type-safe languages, unlike C and C++, do not
provide the degree of control over data representations, memory management, predictability,
and code performance that is needed for these settings.

4.1 Type-Safe C Code
We have developed a type-safe dialect of C known as Cyclone 2 for use in systems program-
ming. When compared to bug-finding tools such as Lint, SPLint, Prefix and Prefast, the pri-
mary advantage of Cyclone is that it makes a strong guarantee of type safety that is enforced
through a combination of (a) an advanced type system, (b) sophisticated static analyses, (c)
language extensions, and (d) run-time checks inserted by the compiler. The type-safety guar-
antee ensures that a wide class of attacks, including buffer overruns, format string attacks, and
integer overflow attacks cannot be used to subvert the integrity of a service. Just as importantly,
the static type system ensures that common coding errors (e.g., accessing an uninitialized vari-
able) are caught early.

Of course the safety provided by Cyclone or any other type-safe language has a price.
Figure 1 shows the performance of Cyclone and Java code normalized to the performance of
C code for most of the micro-benchmarks in the Great Programming Language Shootout.3

The average over all of the benchmarks (plotted on the far right) shows that Cyclone is
about 60% slower than GCC, whereas Sun's Java VM is about 6.5 times slower. For larger,
more realistic benchmarks we see even less overhead for Cyclone. For example, our Cyclone
port of the Boa Web server4 , adds only about 3% overhead [25]. And of course, we found and
fixed a number of errors in the various programs we have ported, including buffer overruns,
that could lead to successful penetrations.

In addition to time, programmers worry about other resources such as space. Most type-
2The Cyclone compiler, tools, and documentation are freely available at http: / /www. eecs. harvard. edu/

-greg/cyclone/.
3See http: / /shootout. alioth. debian. org/. The benchmarks were run on a dual 2.8GHz/2GB Red

Hat Enterprise workstation. We used Cyclone version 0.8.2 with the -03 flag, Sun's Java client SDK build version
1.4.2-05-b04, and GCC version 3.2.3 with the -03 flag. Each reported number in Figure 1 is the median of 11 trials.

4http: //www.boa. org
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Figure 1: Great Programming Language Shootout Performance for C, Cyclone, and Java

safe languages, including Java, take resource control away from the programmer. For instance,
memory management in Java is handled automatically by a garbage collector. In contrast, Cy-
clone provides the low-level control over data layout and memory management needed to build
kernels and embedded systems. In particular, it provides a sophisticated region-based type sys-
tem [22] coupled with an ownership model [25] that yields type-safe, real-time, programmer-
controlled memory management. In addition, because the language has no hidden type-tags
and uses the same data representations and calling conventions as C, it is easy to interface
Cyclone code with legacy libraries.

We have found that with respect to space, there are again overheads when using Cyclone
as compared to C, but these overheads are much less than for Java. For instance, the C version
of the heapsort benchmark had a maximum resident working set size of 472 pages, the Cy-
clone version used 504 pages, and the Java version used 2,471. In general, by supporting safe
manual memory management, Cyclone is able to significantly reduce space overheads present
in garbage-collected languages [25].

There is another cost to achieving safety, namely, the cost of porting a program from C
to a safe language. Porting a program to C# or Java involves a complete rewrite for anything
but the simplest programs. In contrast, most of the Shootout benchmarks, and indeed larger
programs such as the Boa web server, can be ported to Cyclone by touching 5 to 15 percent
of the lines of code. To achieve the best performance, programmers may have to provide
additional information in the form of extended type qualifiers or assertions that are statically
checked by the compiler. Of course, the number of lines of code that changed tells us little
about how hard it is to make those changes. In all honesty, this can still be a time-consuming
and frustrating task. Nevertheless, it is considerably easier than rewriting the program from
scratch in a new language.

CCured [39] is another dialect of C that provides a strong type safety guarantee. Like
Cyclone, CCured uses a combination of static analysis and run-time checks to ensure object-
level type safety. It is generally easier to port an application from C to CCured because the
analysis is almost fully automatic. However, CCured implicitly adds meta-data to objects
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to support run-time checks and relies upon a garbage collector to manage memory. Finally,
CCured cannot easily support a multi-threaded environment. These shortcomings make it
difficult to use CCured in critical systems such as kernels, embedded, or real-time systems.

Other tools, such as Evans's SPLint [16], Microsoft's Prefix [6] and SLAM [3], and En-
gler's Metal [12] provide support for sophisticated static analysis or software model checking.
These tools can detect bugs at compile time that Cyclone cannot, but most of them, includ-
ing Prefix, SPLint and Metal are unsound because they make optimistic assumptions. For
instance, the analyses used in Metal ignore the potential for aliasing or interactions among
multiple threads, which is of course common in systems programs. In turn, this may cause the
tool to miss a potential bug because the semantics are not accurately modeled. In short, all of
these tools are extremely good for finding bugs, but not ensuring their absence. In contrast,
Cyclone either reports a static error or inserts a dynamic check for each potential error and can
thus provide guarantees.

4.2 Type-Safe Machine Code
Java is by far the most widely appreciated example of a language in which type safety is used
to provide security. The functionality of a Java-enabled system, such as a Web browser, can be
dynamically extended by downloading Java code (applets) to be executed within the context
of the system. In fact, a browser does not accept Java source code directly, but rather, JVML
bytecodes (generated by a compiler) that are better suited for direct execution. Therefore, the
security of the browser does not depend on the type safety of Java source, but rather the type
safety of the executable JVML code.

Before executing potentially malicious JVML code, the browser invokes a verifier to check
the type-consistency of the bytecode with respect to an interface that mediates access to the
browser internals. The process of type-checking is meant to ensure that the applet code is
isolated from the surrounding context of the browser, and that access to browser resources is
mediated through the provided interface. Different security policies can be realized by chang-
ing this interface. For example, applets from a trusted source (e.g., the local machine) may be
given access to the file system, whereas applets from an untrusted source (e.g., another host)
may not.

Though more flexible than traditional OS-based mechanisms, the JVML type system is
not without shortcomings. First, the type system is relatively weak by modem standards. For
instance, it provides no notion of parametric polymorphism. Second, the JVML is a relatively
high level CISC machine language tailored for Java. As such, it is ill-suited for compiling other
type-safe languages including Cyclone. For example, because JVML provides no support for
tail calls, it makes a poor target language when compiling functional languages. Finally, the
official specification of the JVML type system is an informal English description and provides
no model for ensuring soundness, though recent work has provided formal specifications of
important fragments of the language [48, 10, 43, 20, 17, 18, 40]. Even if such formal models
can be constructed, it would be a daunting task to prove the correctness of a production JVML
verifier, JIT compiler, and runtime. Hence, the JVML model requires trusting a rather large set
of components that in practice have proven unreliable [28].

To address some of the shortcomings of the JVML, we have studied and developed ad-
vanced type systems for concrete machine languages. A by-product of this work is called
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Typed Assembly Language (TAL) [31, 32]. Unlike the JVML, TAL is based on a low-level
RISC-like machine model and consequently is better suited for compiling a variety of source
languages, not just Java. Furthermore, the type system of TAL is powerful enough that many
more checks can be done statically and thus compilers can produce more efficient code. For
example, a general class of array bounds checks can be statically verified by the current TAL
type checker, whereas the JVML type system requires run-time tests.

The current TAL implementation has been tailored for the widely deployed Intel x86 line
of processors. On those machines, TAL code can be executed without translation, so the TCB
does not include an interpreter or compiler. Like the JVML, key fragments of the TAL type
system and semantics have a formal model, and a soundness result has been proven.

5 Type Systems for End-to-End Security
Type safety is essential to secure programming. However, code may contain vulnerabilities or
malicious code that can lead to security violations without compromising type safety. Mali-
cious programs may simply violate confidentiality (secrecy) by leaking sensitive information.
And programs often contain vulnerabilities that enable attackers to violate confidentiality or
integrity. This has been an ongoing problem for various web services. For example, the Hot-
mail email service has at times had vulnerabilities that permitted users to improperly read each
others' mail.

Systems are secure only if they protect the confidentiality and integrity of the data they
manipulate. Ideally we would like to be able to state high-level security requirements and have
them automatically checked for programs. This would be useful both for users downloading
possible malicious programs, and for program designers who want assurance that they have
met the security requirements.

We have been exploring policies based on information flow (e.g., [19, 11]), which are
attractive because they govern end-to-end use of information within a system. Information
flow policies are therefore more expressive than ordinary (discretionary) access control, which
regulates which principals (users, machines, programs, or other entities) can read or modify
the data at particular points during execution, but do not track how information propagates.

We have been most interested in enforcing two fundamental information security proper-
ties: confidentiality, which requires that information not be released improperly, and integrity,
which requires that information be computed properly from trustworthy information sources.
To understand where information propagates, it is useful to have access to a program-level rep-
resentation of the computation using the information. Previous run-time schemes for tracking
information flow, such as mandatory access control, lacked precision and imposed substantial
time and space overhead.

5.1 Mostly-Static Information Flow Control
A compile-time analysis of programs can check that information flows within programs in
accordance with confidentiality and integrity requirements. In fact, this static analysis can be
described as a type system in which the type of data in the program carries not only information
about the structure of the data (such as int), but also carries security restrictions on the use
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of the data. Such a language is said to have security types. The program does not have to be
trusted to enforce the security policy; only the type checker must be trusted.

Security types are provided by our programming language Jif [341 (for Java Information
Flow), which extends the Java language with support for specification and analysis of infor-
mation flow. The Jif compiler checks information flow, then translates the Jif program to
an equivalent Java program with extra embedded annotations that carry security information.
Thus, run-time space and time overhead are small. Jif has been publicly available now for a
few years and has been used by several other research projects. While a number of other re-
lated languages have been designed for theoretical studies (e.g., [50, 24, 54, 4, 42]), Jif remains
the most complete and powerful implementation of static information flow analysis, and it has
also influenced other language designs. 5

5.2 Security Labels
Jif programs contain labels based on the decentralized label model (DLM) [35], in which prin-
cipals can express ownership of information-flow policies. This model works well for systems
incorporating mutual distrust, because labels specify on whose behalf the security policy oper-
ates. In particular, label ownership is used to control the use of selective declassification [41],
a feature needed for realistic applications of information-flow control.

In this model, a principal is an entity (e.g., user, process) that can have a security concern.
These concerns are expressed as labels, which state confidentiality or integrity policies that
apply to the labeled data. Principals can be named in these policies as owners of policies and
as readers of data.

For example, a security label specifying confidentiality is written as {o: rl , r2 . rn},
meaning that the labeled data is owned by principal o, and that o permits the data to be read
by principals ri through rn (and, implicitly, o). A label is a security policy controlling the
uses of the data it labels; only the owner has the right to weaken this policy.

Labels on data create restrictions on the use of that data. The use of high-confidentiality
data is restricted to prevent information leaks, and the use of low-integrity data is restricted
to prevent information corruption. The label on information may be securely changed from
label L1 to label L 2 if L 2 specifies at least as much confidentiality as L 1, and at most as much
integrity as L1. This label relationship is written as L1 E: L 2.

For example, if a Jif program contains variables x, and x2 with labels L1 and L 2 respec-
tively, then an assignment x2 = x, is permitted only if L1 E L 2. Otherwise, the assignment
transfers the information in x, to a location with a weaker security label. For labels in the
DLM, this relationship can be checked at compile time, so the labels of x, and x2 are not
represented at run time.

Recently, we have shown how to extend the DLM to include policies for information avail-
ability [59]. Because information flow analysis is essentially a dependency analysis, a static
information flow analysis can determine how system availability depends on availability of
inputs.

5More information on this approach can be found in our frequently-cited survey of work on language-based infor-
mation flow security [44].
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5.3 Beyond Zero Information Flow
The usual formalization of information security is in terms of noninterference, a formal state-
ment that no information flow occurs from one security level to another. Noninterference is
mathematically elegant, but real programs need to release some information as part of their
proper functioning. For example, a password program leaks a little information about pass-
words because a guesser learns at least that the password is not the guessed password. To
characterize the security of real systems, more notions of security are needed that are more
expressive and general than noninterference.

Recent results show substantial progress toward this goal. We identified a property called
robustness that generalizes noninterference by ensuring that information release, while permit-
ted, cannot be affected by untrusted attackers [53]. Further, we proved that robustness can be
enforced by a static program analysis that permits information release only at high-integrity
program points [36]. This analysis is built into recent versions of Jif.

Another way to generalize noninterference is to control the quantity of information that
is released by a system. A standard approach has been to model the quantity of information
in terms of the reduction in the uncertainty of the attacker [11, 29, 21]. We have shown that
accuracy can be used a quantitative information metric, avoiding troubling anomalies that arise
in the uncertainty-based approach [9].

One further promising approach to generalizing noninterference is to add policies for
downgrading and erasure [7, 8]. Downgrading policies say when downgrading can be used to
weaken noninterference; dually, erasure policies say when information erasure must be used
to strengthen noninterference. Erasure policies require that the system "forget" information at
a given security level.

5.4 Automatic Partitioning of Secure Distributed Systems
Distributed systems make security assurance particularly difficult, as these systems naturally
cross administrative and trust boundaries; typically, some of the participants in a distributed
computation do not trust other participants or the computing software and hardware they pro-
vide. Systems meeting this description include clinical and financial information systems,
business-to-business transactions, and joint military information systems. These systems are
distributed precisely because they serve the interests of mutually distrusting principals. The
open question is how programmers should build distributed systems that properly enforce
strong security policies for data confidentiality and integrity.

We introduced automatic program partitioning and replication [56, 57, 58] as a way to
solve this problem. As depicted in Figure 2, the Jif/split compiler automatically partitions
high-level, non-distributed code into distributed subprograms that run securely on a collection
of host machines that are trusted to varying degrees by the participating principals. (Such
hosts are heterogeneously trusted.) A partitioning is secure if the security of a principal can
be harmed only by the hosts the principal trusts. Thus, partitioning of the source program is
driven by a high-level specification of security policies and trust.

Both code and data are partitioned to ensure that data and computation are not placed on
a machine where confidentiality or integrity might be violated. Sometimes there is no single
machine that is sufficiently trusted to protect the integrity of data or computation; in that case,
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Figure 2: Program partitioning

the partitioning process may replicate the data or computation across several hosts. Results are
only considered to be high integrity when all the replica hosts agree on its value.

A number of distributed programs have been implemented using automatic program parti-
tioning and replication, including a variety of online auction programs, a banking simulation,
and the game of Battleship. Static information flow checking caught a number of bugs in our
implementations of these programs. We compared the distributed programs generated auto-
matically by Jif/split with carefully hand-coded versions of the same programs; the results
suggested that the run-time performance of Jif/split programs is reasonable; the hand-coded
programs are more efficient primarily because they can exploit concurrency. We have studied
information flow in the presence of concurrency [55], but Jif does not yet support concurrent
programming because concurrency can create covert timing channels.

6 Secure Languages for Firmware
Firmware is low-level driver code associated with hardware devices whose purpose is to pro-
vide an interface by which the system can operate the device. On a typical computing platform,
firmware is composed of many interacting modules. There is usually some central kernel sup-
port, as well as device drivers supplied by the manufacturers of the various hardware compo-
nents. A driver for a particular device may be used to initialize the device, perform diagnostic
checks, establish communication with other devices connected to it, allocate system resources,
and other similar tasks. Often the drivers reside in ROM on the devices themselves and are
loaded at boot time.

Because these device drivers are normally considered part of the trusted computing base,
they constitute a significant security risk. They execute in privileged mode and have essentially
unrestricted access to other devices and the entire hardware configuration. They could easily
circumvent any operating system-based security mechanism. A malicious driver would have
virtually limitless potential to cause irreparable damage, introduce channels for clandestine
access, install arbitrary software, or modify the operating system.

Compounding the worry is that most drivers are written by third-party device manufac-
turers and may come from various subcontractors of unknown origin. Many of these devices
and their associated firmware are mass-produced overseas, outside the purview of any domes-

11



tic authority. It would be well within the capability of a determined adversary to exploit this
vulnerability on a massive scale.

Attempts to address this security issue generally fall into two categories: authentication-
based and language-based.

6.1 Authentication-Based Approaches
In an authentication-based approach, an attempt is made to ensure the integrity of firmware
via digital signatures or chain-of-custody and physical protection. This strategy requires that
the firmware was originally benign. This belief is typically based on trust in the supplier or
in some detailed inspection of the code by a (human) certifying authority. It simply ensures
that the code has not been tampered with after it was approved. This strategy can preserve an
existing relationship of trust, but it cannot establish new trust. Examples of this approach are
the driver-certification scheme currently used by Microsoft and the AEGIS system [2].

The authentication-based approach is currently the preferred strategy in practice today.
However, its use is not without cost. There may be a large, far-flung network of vendors for
whom trust must be established. Moreover, there are mechanisms for automatically updating
device drivers and firmware with patches via the Internet. Firmware that is updated regularly
needs to be reexamined each time.

6.2 The Language-Based Approach
In the language-based approach, firmware modules are written in a type-safe language and
compiled to an annotated bytecode form. Each time a firmware module is loaded, it is au-
tomatically and invisibly verified against a standard security policy by a trusted verifier. The
compiled code and the compiler that produced it need not be trusted. This approach is similar
to proof-carrying code and related techniques [37, 38, 30, 33, 27].

In this project, we have developed a prototype called BootSafe [1, 49]. The system operates
in the context of the Open Firmware standard [26], an IEEE standard for boot firmware that
was developed in the mid 1990's and is now in widespread use. Both Sun Microsystems and
Apple use boot firmware that conforms to the standard. Several commercial implementations
of Open Firmware are available.

The Open Firmware standard is based on the Forth programming language. Currently, de-
vice drivers are written in Forth and compiled tofcode, a low-level, mostly machine-independent
bytecode language similar to the Java virtual machine language. Every Open Firmware-
compliant boot kernel must include an fcode interpreter or virtual machine.

The BootSafe architecture consists of several major subsystems:

" J2F, an annotating Java bytecode to Forth fcode compiler;

* a stand-alone verifier;

" an API and runtime support library consisting of various Java classes and interfaces.

BootSafe-compliant device drivers are written in Java. They may extend system classes
provided by the API that implement standard functionality and provide access to Open Firmware
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services. They may also be required to implement certain Java interfaces in the API that spec-
ify functionality necessary to conform to the Open Firmware standard. Java thus provides an
enforcement mechanism that is absent in Forth.

The Java driver is compiled to bytecode using any standard off-the-shelf Java compiler.
The BootSafe compiler J2F is then used to compile the (typed) Java bytecode to annotated
fcode. The fcode driver can then be shipped with the hardware device. In Open Firmware, the
driver is burned into ROM and stored on the device itself.

When the system boots, the boot kernel recursively probes the system bus to determine
the hardware configuration and initialize devices. At that time, each device is probed to see
if there is an on-board driver. If so, it is loaded into main memory, linked against the runtime
support library, and executed. Just before execution, the verifier checks the driver to ensure
compliance with the security policy.

The security policy used in BootSafe is a standard, baked-in policy appropriate for device
drivers. Besides basic memory and control-flow safety, the security policy asserts that device
drivers may not access other devices, may only access system memory and bus addresses
allocated to them through a strictly controlled allocation and deallocation procedure, and may
otherwise interact with the system only through a strict interface provided by the API.

Our prototype contains fully operational and verified Open Firmware-compliant boot drivers
written in Java for a network card and a 1.4Mb floppy disk drive.

6.3 Limitations
Language-based techniques, while a strong countermeasure to malicious firmware, cannot pro-
tect against all forms of attack. For example, certain denial-of-service attacks and malicious
hardware are difficult or impossible to detect. However, they do raise the bar by making it
more difficult for drivers to operate devices maliciously.

7 Putting It Together
In-lined reference monitors, advanced type systems, and certifying compilers are promising ap-
proaches to system security. Each allows rich instantiations of the Principle of Least Privilege;
each involves only a small and verifiable trusted computing base. Moreover, our language-
based security approaches seem ideally suited for use in extensible and component-based
software-a domain not served well by traditional operating system reference monitors.

We have solved a large number of both theoretical and practical engineering problems for
these separate areas of language-based security. Moreover, we have demonstrated that they
can work together to achieve more than the sum of the parts. For example, in the Mobile
rewriter, by coupling IRM-style rewriting with certifying compilation, we are able to eliminate
the need for a trusted rewriter. By leveraging the type-safety of the Microsoft intermediate
language, we are able to avoid the dynamic overheads of protecting the integrity of the in-lined
reference monitor. At the same time, we were able to augment the ideas of proof-carrying code
to provide for a more dynamic and flexible policy language.

The possible ways to combine rewriting, static analysis, and certification are endless, and
the tradeoffs are complex. We believe that a key underlying theme is the relocation of function
and trust in the TCB. It seems easier to insert run-time checks than to do analysis before
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execution is started. Yet, static analysis can lead to better performance, because it occurs
offline and deals better with non-safety properties such as availability and integrity. It also
seems easier and requires a smaller TCB to check proofs than to create them.
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